

GCE

Chemistry A

Advanced Subsidiary GCE

Unit **F322:** Chains, Energy and Resources

Mark Scheme for January 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013

Annotations

Annotations available in Scoris.

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
^	Omission mark
RE	Rounding error
SF	Error in number of significant figures
✓	Correct response

F322/01 Mark Scheme January 2013

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning	
DO NOT ALLOW Answers which are not worthy of credit		
IGNORE	Statements which are irrelevant	
ALLOW Answers that can be accepted		
() Words which are not essential to gain credit		
_	Underlined words must be present in answer to score a mark	
ECF	Error carried forward	
AW Alternative wording		
ORA	Or reverse argument	

Generic comments

ORGANIC STRUCTURES

For a 'structure' or 'structural formula',

• ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)

For an alkyl group shown within a structure,

- ALLOW bond drawn to C or H, eg ALLOW CH₃-,CH₂-, C₃H₇-, etc
- ALLOW vertical 'bond' to any part of an alkyl group

For an OH group shown within a structure,

- **DO NOT ALLOW** formula with horizontal —HO **OR** OH—
- ALLOW vertical 'bond' to any part of the OH group

For a CHO group shown within a structure,

DO NOT ALLOW COH

For a 3D structure,

•	For bond in the plane of paper, a solid line is expected:	
•	For bond out of plane of paper, a solid wedge is expected:	
•	For bond into plane of paper, ALLOW:	Many Many Many
•	ALLOW a hollow wedge for 'in bond' OR an 'out bond', provided it is different from the other in or out wedge eg:	, , , , , , , , , , , , , , , , , , ,

NAMES

Names including alkyl groups:

- **ALLOW** alkanyl, eg ethanyl (ie **IGNORE** 'an')
- **DO NOT ALLOW** alkol, eg ethol (ie 'an' is essential)

Names of esters:

- Two words are expected, eg ethyl ethanoate
- ALLOW one word, eg ethylethanoate

Names with multiple numbers and hyphens:

Use of 'e'

- ALLOW superfluous 'e', eg propane-1-ol ('e' is kept if followed by consonant)
- ALLOW absence of 'e', eg propan-1,2-diol ('e' is omitted if followed by vowel)

Hyphens separate name from numbers:

ALLOW absence of hyphens, eg propane 1,2 diol

Multiple locant numbers must be clearly separated:

- ALLOW full stops: eg 1.2 OR spaces: 1 2
- DO NOT ALLOW eg 12

Locant numbers in formula must be correct

DO NOT ALLOW propan-3-ol

Order of substituents should be alphabetical:

• ALLOW any order (as long as unambiguous), eg 2-chloro-3-bromobutane

ABBREVIATIONS

van der Waal's forces

ALLOW vdw forces **OR** VDW forces (and any combination of upper and lower cases)

C	uestion	Answer	Marks	Guidance
1	(a)	C₃H ₇ ✓	1	ALLOW H ₇ C ₃
	(b)	Saturated Only has (carbon to carbon) single bonds ✓	2	ALLOW does not contain any (carbon to carbon) double bonds ALLOW all of the carbon atoms are bonded to four other atoms
		Hydrocarbon Contains (the elements) hydrogen and carbon only ✓		DO NOT ALLOW contains hydrogen and carbon DO NOT ALLOW a mixture of carbon and hydrogen only DO NOT ALLOW hydrogen and carbon molecules only
	(c)		1	
	(d)	as branching increases the boiling point decreases OR the more branched the isomers of hexane are the lower the boiling point ✓	3	ALLOW ORA throughout First marking point must compare boiling point and branching for all three isomers
		branched isomers have less surface (area) of contact OR branched fewer points of contact (than unbranched) ✓		Reference to just surface area / closeness of molecules is not sufficient
		(the more branched the) fewer van der Waals' forces OR (the more branched) has weaker van der Waals' forces OR Less energy required to break van der Waal's forces ✓		ALLOW vdw forces OR VDW forces (and any combination of upper and lower cases) DO NOT ALLOW VDW mark if answer states that these are between atoms or answer implies that these are bonds
	(e)	$C_{10}H_{22} \rightarrow C_6H_{14} + C_4H_8$ OR $C_{10}H_{22} \rightarrow C_6H_{14} + 2C_2H_4 \checkmark$	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) IGNORE state symbols

Q	uesti	ion	Answer		Marks	Guidance
1	(f)	(i)	$C_4H_{10} + 2Cl_2 \rightarrow C_4H_8Cl_2 + 2HCl \checkmark$,	1	IGNORE state symbols
	(ii)		In a way of A	1	2	
			Isomer 1	Isomer 2 3-dichlorobutane ✓		Must be a displayed formula
			Correct displayed formula eg:			ALLOW absence of hyphens 1 and 3 must be clearly separated: ALLOW full stops: 1.3 OR spaces: 1 3 DO NOT ALLOW 13
	(g)	(i)	covalent bond breaking ✓		2	ALLOW covalent bond is split
			one electron (from the bond pair) goes OR makes (two) radicals ✓	to each atom		IGNORE particle for atom DO NOT ALLOW molecule or compound for atom DO NOT ALLOW to each molecule or to each reactant ALLOW one electron goes to each product / species IGNORE homolytic fission equations
		(ii)	$Cl + C_4H_9Cl \rightarrow C_4H_8Cl + I$ $C_4H_8Cl + Cl_2 \rightarrow C_4H_8Cl_2 + Cl \checkmark$	HC <i>l</i> ✓	2	IGNORE dots even if incorrect
	(h)		$C_4H_{10} + 4\frac{1}{2}O_2 \rightarrow 4CO + 5H_2O$ OR $C_4H_{10} + 2\frac{1}{2}O_2 \rightarrow 4C + 5H_2O \checkmark$		1	ALLOW any correct multiples for these equations eg $2C_4H_{10} + 9O_2 \rightarrow 8CO + 10 H_2O$ IGNORE state symbols ALLOW equations for incomplete combustion that give CO_2 with CO and/or C eg $C_4H_{10} + 4O_2 \rightarrow 3CO + C + 5H_2O$
				Total	16	

C	uestic	on Answer	Marks	Guidance
2	(a)	(enthalpy change for the) formation of one mole (of P_4O_{10}) \checkmark from (constituent) elements OR from P_4 /phosphorus and O_2 /oxygen \checkmark	2	ALLOW energy required OR energy released ALLOW makes one mole of product/substance/molecule/ compound ALLOW made from P and O ₂ OR made from two elements IGNORE comments related to standard conditions
	(b)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -368 (kJ mol ⁻¹) award 3 marks (+)2984 +(+)6 × 286 OR (+)2984 +(+)1716 OR (+)4700 ✓	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors.
		(1)2304 1(1)0 × 200 3K (1)2304 1(1)11 10 3K (1)4700 7		IGNORE sign
		(−)1267 × 4 OR (−)5068 ✓		IGNORE sign
		-368 ✓		ALLOW ECF for enthalpy change of products – enthalpy change of reactants
				ALLOW for 2 marks: +368 cycle wrong way around OR -1798 no × 6 OR (+)3433 no x 4 OR -3352 missing 2984 OR (+) 9768 product the wrong sign around OR (-) 9768 reactants the wrong sign ALLOW for 1 mark: (+)1798 no x 6 and cycle wrong way around OR -3433 cycle wrong way around and not x 4 OR (+)3352 missing 2984 and cycle wrong way around OR (+)2003 no x 6 or x 4 OR (+)449 missing 2984 and x 4 OR -4782 missing 2984 and x 6 Note: There may be other possibilities.

Q	uestio	n Answer	Marks	Guidance
	(c)	P ₄ + 5O ₂ + 6H ₂ O → 4H ₃ PO ₄ ✓ Only the desired product is made ✓ Second marking point can only be awarded if the equation is correct.	2	ALLOW there are no waste products OR there are no by-products OR there is only one product. DO NOT ALLOW it is an addition reaction
		Total	7	

C	Questi	ion	Answer	Marks	Guidance
3	(a)	(i)	acid ✓	1	ALLOW named mineral acid or correct formula eg phosphoric acid, H ₃ PO ₄ , sulfuric acid, H ₂ SO ₄ or H ⁺ DO NOT ALLOW any carboxylic acids
		(ii)	$C_5H_{12}O \rightarrow C_5H_{10} + H_2O \checkmark$	1	DO NOT ALLOW use of C₅H₁₁OH
		(iii)	structural isomerism have the same molecular formula ✓ but different structural formulae ✓	4	Same formula is not sufficient ALLOW different structure OR different displayed formula OR different skeletal formula Different formula or different arrangement of atoms is not sufficient ALLOW different structural arrangement (of atoms)
			stereoisomerism have the same structural formula ✓		ALLOW have the same structure Stereoisomers have the same formula or molecular formula is not sufficient
			but different arrangement (of atoms) in space ✓		ALLOW different spatial arrangements (of atoms)

		•		T	
	Questi		Answer	Marks	Guidance
3	(a)	(iv)	CH₃ H	3	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above A and B must clearly show cis and trans configuration
			H CH_2 — CH_3 A		eg
			C = C		A B Answers to A and B are interchangeable
			CH₃ `CH₂—CH₃ B		C: CH ₂ CHCH ₂ CH ₂ CH ₃ ALLOW -C ₂ H ₅ group in A or B or -CH ₂ C ₂ H ₅ in C DO NOT ALLOW -C ₃ H ₇ group in C
			H C=C H CH ₂ CH ₂ CH ₃		
			Correct structure for A ✓		
			Correct structure for B ✓		
			Correct structure for C ✓		

Question	Answer	Marks	Guidance
3 (a) (v)	carbon–carbon double bond ✓ Each carbon atom in the double bond is attached to (two) different groups/atoms ✓	2	IGNORE comments about rotation ALLOW carbon double bond ALLOW Each carbon atom of the double bond is attached to a H and an alkyl group DO NOT ALLOW functional groups for groups DO NOT ALLOW the carbon atoms are attached to different groups "Each carbon atom in the double bond" implies a carbon—carbon double bond for the first marking point
(b)	Correct skeletal structure of product ✓ Balanced equation ✓	2	Balancing mark can only be awarded if the equation has a correct skeletal formula for the product
(c)	distil with H ₂ SO ₄ / heat under reflux with H ₂ SO ₄ / K ₂ Cr ₂ O ₇ CH ₃ CH ₂ CH ₂ CHO CH ₃ CH ₂ CH ₂ CHO	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) eg H H C C C C C C C C C C C C C C C C C
	Total	15	

	uestion	Answer	Marks	Guidance
4	(a)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 681 (kJ) award 3 marks	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below.
		Evidence of dividing 1000 by 24		ALLOW 41.7 up to calculator value 41.6666667 correctly rounded.
				ALLOW $\frac{1000}{24}$ for first marking point if not calculated
		Evidence of dividing by 3 and multiplying by 49 in the calculation		ALLOW energy released per mole = 16.3 ✓
		energy released = 681 (kJ) ✓		IGNORE (–) sign in the answer
		(MUST BE TO 3 SIG FIGS)		
		Alternative Working		Common Incorrect answers
		$3 \text{ moles} = 72 \text{ dm}^3 \checkmark$		0.392 scores 2 marks 392000 scores 2 marks
		So <u>1000</u> or 13.9 ✓ 72		
		Energy released = $13.9 \times 49 = 681 \text{ (kJ)}$		

Question	Answer	Marks	Guidance
4 (b)	enthalpy Signature Fa Signature	3	IGNORE state symbols for the products IF there is $\mathbf{no} \ \Delta H$ labelled then ALLOW -49 only as an alternative label for ΔH IF ΔH is labelled then IGNORE any numerical value DO NOT ALLOW $-\Delta H$ ALLOW this arrow even if it has a small gap at the top and bottom i.e. does not quite reach reactant or product line ALLOW (+) 225 only as an alternative label for E_a ALLOW arrows at both ends of activation energy line The E_a line must point to maximum (or near to the maximum) on the curve ALLOW this line even if it has a small gap at the top and bottom ie does not quite reach the maximum or reactant line ALLOW A_E or E_a for activation energy

Question	Answer	Marks	Guidance
(c)	(+)49 ✓	1	DO NOT ALLOW –49
(d)	(+)274 ✓	1	DO NOT ALLOW –274 ALLOW answer to (c) + 225 as ECF
(e)	(equilibrium position shifts) to the left ✓	2	ALLOW 'favours the left', as alternative for 'shifts equilibrium to left'
	(Forward) reaction is exothermic OR reaction gives out heat OR reverse reaction is endothermic OR reverse reaction takes in heat ✓ The explanation mark is dependent on the correct shift of the equilibrium		Note: ALLOW suitable alternatives for 'to left', eg: towards CO ₂ / H ₂ OR towards reactants OR in backward direction OR in reverse direction OR decreases yield of CH ₃ OH /products IGNORE responses in terms of rate
(f)	(equilibrium position) shifts to the left ✓	2	ALLOW 'favours the left', as alternative for 'shifts equilibrium to left' Note: ALLOW suitable alternatives for 'to left', eg: towards CO ₂ / H ₂ OR towards reactants OR in backward direction OR in reverse direction OR decreases yield of CH ₃ OH /products IGNORE responses in terms of rate
	Right-hand side has fewer (gaseous) moles/molecules ✓ ORA		ALLOW four moles on the left and two moles on the right ALLOW more moles of reactants or fewer moles of products
	The explanation mark is dependent on the correct shift of the equilibrium		ASSUME "goes the side with more gas molecules" implies from equation that more molecules on the left OR "goes to side with fewer gas molecules" implies from equation that fewer molecules are on the right

Question	Answer	Marks	Guidance
(g)	Adsorption of reactants OR adsorption of gases OR H₂ and CO₂ attached to surface ✓	3	ALLOW CO ₂ and H ₂ (weakly) bonded to surface OR reactants bond to surface OR CO ₂ and H ₂ form temporary bonds with the catalyst DO NOT ALLOW absorption
	Bonds weaken in reactants OR chemical reaction OR activation energy decreases ✓		ALLOW bonds weaken in H ₂ OR bonds weaken in CO ₂ OR C=O bonds weaken OR bonds break and new bonds made in product OR H ₂ O and CH ₃ OH made
	Desorption of products OR desorption of H₂O and CH₃OH ✓		ALLOW products leave the surface/catalyst OR H ₂ O and CH ₃ OH no longer bonded to surface/catalyst ALLOW deadsorption OR adsorb from for desorption ALLOW diffuse away for desorption
	Total	15	

C	uestio	n Answer	Marks	Guidance
5	(a)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 90% award 3 marks	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below.
		amount of dichloroethane = $\frac{19800000}{99.0}$		ALLOW approach based on mass for 2nd and 3rd marks
		OR 200000 (mol) OR 2 × 10 ⁵ (mol) ✓		
		amount of chloroethene = $\frac{11250000}{62.5}$		Theoretical mass of chloroethene = 200000×62.5 OR 12500000 (g) OR 1.25×10^7 (g) \checkmark
		OR 180000 (mol) OR 1.8×10^5 (mol) \checkmark		Calculates percentage yield = \frac{11250000}{12500000} × 100 = 90 % ✓
		Calculates percentage yield = $\frac{180000}{200000} \times 100 = 90 \%$		ALLOW approach based on grams rather than tonnes: $n(\text{dichloroethane}) = \frac{19.80}{99.0}$ OR 0.2 (mol) \checkmark
				$n(\text{chloroethane}) = \frac{11.25}{62.5}$ OR 0.18 (mol)
				OR theoretical mass chloroethane = 0.2 x 62.5 OR 12.5 g ✓
				% yield = $\frac{0.18}{0.20} \times 100 = 90 \%$ OR $\frac{11.25}{12.5} \times 100 = 90 \%$ ✓
				**Mark for an answer above 100%* **Total Control of the Control o
				Note: If this is the only working seen award no marks ie $\frac{11.25 \times 10^6}{19.80 \times 10^6} \times 100 = 56.81\%$

C	uestion	Answer	Marks	Guidance
5	(b)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = (+)62 award 3 marks	3	IF there is an alternative answer, check to see if there is any ECF credit possible.
		ΔH for bonds broken = 2691 (kJ mol ⁻¹) \checkmark		IGNORE sign ALLOW 1106 (C–Cl, C–C and C–H bonds)
		ΔH for bond formed = 2629 (kJ mol ⁻¹) \checkmark		IGNORE sign ALLOW 1044 (H–Cl and C=C bonds)
		$\Delta H = (+)62 \text{ (kJ mol}^{-1}) \checkmark$		ECF based on bonds broken – bonds formed
				ALLOW 2 marks for –62
	(c)	Displayed formulae of monomer and polymer required for the marks.	3	Polymer must have side links (do not have to cut through bracket and can be dotted lines)
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ALLOW a correct section of the polymer with side links as below would score two marks as the equation is not balanced CI
		Only the correct polymer on right hand side ✓		DO NOT ALLOW ECF from wrong monomer
				n on LHS can be at any height to the left of formula AND n on the RHS must be a subscript (essentially below the side link)
		A correctly balanced equation using displayed formulae for any monomer and matching polymer including the correct use of $n \checkmark$		The equation below would be worth 1 mark for balancing n H C H H H N H H H N H H H N N

Question	Answer	Marks	Guidance
(d) (i)	React with an alkali OR react with a base/carbonate OR Bubble through water (to make HCl(aq)) OR dissolve in water ✓	1	ALLOW react with a named alkali or base eg calcium carbonate, calcium hydroxide, magnesium oxide, ammonia ALLOW an appropriate chemical formula IGNORE use of gas scrubbers
(ii	Organic feedstock OR cracked ✓	2	ALLOW separate and recycle or sorting and remoulding ALLOW use for the production organic compounds OR synthesis gas ALLOW the production of plastics or monomers or new polymers
(ii	(Bio) degradable (polymers) OR compostable (polymers) OR soluble (polymers) OR photodegradable (polymers) ✓	1	IGNORE a named polymer if degradable DO NOT ALLOW any addition polymer eg PTFE
	Total	13	

C	Questi	ion	Answer	Marks	Guidance
6	(a)		Bond breaking absorbs energy AND bond forming releases energy ✓ More energy released than absorbed ✓ The second marking point is dependent on the correct identification of the energy changes during bond breaking and bond making	2	ALLOW bond breaking is endothermic AND bond forming is exothermic DO NOT ALLOW bond forming requires energy ALLOW more energy is released when the bond in the products are formed than is required to break the bonds in the reactants ALLOW exothermic change transfers more energy than endothermic change OR bond forming transfers more energy than bond breaking OR '(the sum of the) bond enthalpies in the products is greater than the (sum of the) bond enthalpies in the reactants' OR '(the sum of the) bond enthalpies of the bonds made is greater than (the sum of) the bond enthalpies of the bonds broken' OR more energy associated with bond making than with bond breaking IGNORE reference to strong and weak bonds IGNORE reference to number of bonds broken or made IGNORE enthalpy of products is less than enthalpy of reactants
	(b)	(i)	(C=O) bond vibrates (more) OR bond bends (more) OR bond stretches (more) ✓	1	IGNORE molecule vibrates/rotates "It" refers to the molecule and is insufficient DO NOT ALLOW any reference to bond breaking. DO NOT ALLOW a stated bond if not present in CO ₂ eg C-O, C-H

Question	Answer	Marks	Guidance
(ii)	Any two from: (injected) deep into the oceans / sea ✓	2	DO NOT ALLOW reference to carbon being stored – the answer must either refer to carbon dioxide or not mention the
	(injected) deep into the decane, sea		name of the stored substance. Assume "it" refers to CO ₂ DO NOT ALLOW dumping waste at the bottom of the sea
			ALLOW on the sea-bed
			DO NOT ALLOW dissolve CO ₂ in the sea OR (stored) in ocean
	(Stored) in geological formations OR (stored) deep in rocks OR (stored) in old mines		DO NOT ALLOW geographical formations ALLOW stored under the sea (bed)
	OR (stored) in old oil wells OR old gas fields ✓		ALLOW pumped into oil wells to force last bit of oil out DO NOT ALLOW buried underground
	(Stored) by reaction with metal oxides OR reaction to form (solid) carbonates		DO NOT ALLOW react with metals to form carbonates
	OR (stored) as a carbonate OR equation to show formation of metal carbonate ✓		IGNORE mineral storage

Question	Answer	Marks	Guidance
(c)	Any two from:	2	
	 Energy demand Low(er) temperature (can be used) OR reduces CO₂ emissions (from burning fossil fuels) ✓ 		ALLOW 'allows use of room temperature' OR 'allows use of a lower pressure' OR uses less fuel
			IGNORE lower energy demand OR lower activation energy IGNORE cheaper IGNORE less greenhouse gases OR reduces global warming
	Specificity enzymes have a great deal of specificity ✓		ALLOW making specific isomers / enantiomers ALLOW for making pure products ALLOW generating specified products
	Atom economy greater atom economy OR less waste ✓		ALLOW increases atom economy
	Toxicity can reduce use of toxic solvents OR reduces use of toxic catalysts OR reduces the use of toxic reactants ✓		ALLOW reduce use of hazardous/toxic/harmful/poisonous chemicals ALLOW enzymes are non toxic IGNORE can be reused

F322/01 Mark Scheme January 2013

Question	Answer	Marks	Guidance
Question (d)	Catalyst lowers the activation energy (because of a different reaction pathway) ✓ Diagram of Boltzmann distribution ✓ axes labelled (number of) molecules and energy ✓ Ea cat (number of) molecule molecules with energy above Ea Greater proportion of molecules with energy above activation energy with catalyst ✓	Marks 5	Can be scored from the diagram by correctly labelling $E_{\text{a cat}}$ closer to the origin than E_{a} Boltzmann distribution must start at origin AND must not touch x -axis at high energy DO NOT ALLOW Boltzmann distribution mark if two curves drawn DO NOT ALLOW Boltzmann distribution curve bending upwards at higher energy ALLOW particles instead of molecules DO NOT ALLOW the first use of atoms but credit atoms if used in a subsequent marking point DO NOT ALLOW enthalpy on x -axis instead of energy ALLOW more molecules with energy above activation energy (with a catalyst) OR more molecules overcome the activation energy (with a catalyst) OR more molecules have enough energy to react (with a catalyst) OR more molecules are able to react at lower energies
	more effective collisions OR more successful collisions OR increased frequency of successful collisions ✓	10	More collisions OR more frequent collisions are not sufficient
	Total	12	

Question	Answer	Marks	Guidance
7	Nucleophilic substitution reaction	5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
	correct equation for the reaction ✓ CH ₂ CHCH ₂ CH ₂ Cl + KOH → CH ₂ CHCH ₂ CH ₂ OH + KCl		ALLOW CH ₂ CHCH ₂ CH ₂ Cl + OH ⁻ → CH ₂ CHCH ₂ CH ₂ OH + Cl ⁻
	OR $C_4H_7Cl + KOH \rightarrow C_4H_7OH + KCl$		ALLOW $C_4H_7Cl + OH^- \rightarrow C_4H_7OH + Cl^-$
			ALLOW correct molecular OR structural OR displayed OR skeletal formula OR mixture of the above
	correct product of the reaction ✓ H H H H C C C C C OH H H H		For structure of the product ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) if seen ONCE in equation, mechanism or drawn out eg CH ₂ CHCH ₂ CH ₂ OH
	Mechanism		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	dipole shown on C—C l bond: C^{δ^+} and Cl^{δ^-} in the correct chloroalkene \checkmark		curly arrow must start from one lone pair on O atom of ⁻ OH ion OR from negative charge on the O atom of the ⁻ OH ion
	curly arrow from HO⁻ to carbon atom of C−C <i>l</i> bond AND curly arrow from C−C <i>l</i> bond to chlorine atom ✓		Lone pair does not need to be shown on ⁻ OH ion
	formation of C1 - ✓		

Question	Answer	Marks	Guidance
	Nucleophilic substitution continued (S _N 1)		ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
	Step 1:		ALLOW S _N 1 mechanism
	H_c=c H H H H		dipole shown on C–CI bond, C^{δ^+} and CI $^{\delta^-}$ in correct chloroalkene \checkmark
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		curly arrow from C–Cl bond to halogen atom and Cl⁻✓
	H H H		curly arrow from ⁻ OH to correct carbocation ✓ curly arrow must start from one lone pair on O atom of ⁻ OH ion
	Step 2:		OR from negative charge on the O atom of the OH ion
	$\begin{array}{c c} H \\ C = C \\ H_2C - C \\ H \end{array}$ $\begin{array}{c} H \\ OH \\ H \end{array}$ $\begin{array}{c} H \\ C = C \\ H_2C - C \\ OH \end{array}$		Lone pair does not need to be shown on ⁻ OH ion
	H H		

F322/01 Mark Scheme January 2013

Question	Answer	Marks	Guidance
7	Electrophilic addition	6	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
	correct equation for the reaction ✓		
	CH ₂ CHCH ₂ CH ₂ CI + HBr → CH ₃ CHBrCH ₂ CH ₂ CI OR CH ₂ CHCH ₂ CH ₂ CI + HBr → CH ₂ BrCH ₂ CH ₂ CI Indication that there are two possible addition products ✓		ALLOW correct molecular OR structural OR displayed OR skeletal formula OR mixture of the above. eg $C_4H_7Cl + HBr \rightarrow C_4H_8BrCl$
	Correct product ✓		
	H Br H H H H H H H H H		For the structure of the product ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) if seen ONCE in equation, mechanism or drawn out eg CH ₂ BrCH ₂ CH ₂ CH ₂ Cl or CH ₃ CHBrCH ₂ CH ₂ Cl
	Mechanism		
	Curly arrow from C=C of correct chloroalkene to attack the H atom in HBr ✓		curly arrow must start from covalent bonds and not atoms Lone pair does not need to be shown on ion or used in mechanism
	Correct dipole on H–Br: H ^{δ+} and Br ^{δ−} AND curly arrow from H–Br bond to Br ✓		DO NOT ALLOW any other partial charges eg shown on double bond
	Correct carbocation / carbonium ion with the full positive charge shown: C ⁺		DO NOT ALLOW $C^{\delta+}$ for charge on carbonium ion.
	correct curly arrow from lone pair of Br⁻ to correct carbon atom OR correct curly arrow from negative charge of Br⁻ to correct carbon atom ✓		Curly arrow from Br ⁻ can start from the negative charge or the lone pair DO NOT ALLOW delta negative, i.e. Br ⁵⁻

Question	Answer	Marks	Guidance
7	Electrophilic addition continued		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	H—————————————————————————————————————		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	H—————————————————————————————————————		
	heterolytic fission for both mechanisms and not contradicted ✓	1	

F322/01	Mark Scheme	January 2013
---------	-------------	--------------

Question	Answer	Marks	Guidance
	ALTERNATIVE APPROACH The Candidate who reacts with KOH followed by HBr Award all marks for the nucleophilic substitution mechanism as per the marking scheme You can award all marks for the electrophilic addition mechanism; however the product will be one of the following:		
	Н Н		
	The mechanism will be the same except the —Cl will now be replaced by —OH at every stage		
	Total	12	

Question	Answer	Marks	Guidance
8	IR spectrum (absorbance between) 3200–3550 cm ⁻¹ indicates –OH AND X is an alcohol ✓	1	LOOK ON THE SPECTRUM for labelled absorbance which can be given credit ALLOW an absorbance within the range 3100 to 3700cm ⁻¹ from the spectrum. Answer must give –OH and alcohol for the mark. IGNORE phenol DO NOT ALLOW carboxylic acid (there is no carbonyl group present in the spectrum)
	Formula	3	Must be a clear link between the formula and the M_r OR m/z ALLOW evidence of M_r , eg $(12 \times 3) + (8 \times 1) + 16$; $36 + 8 + 16 = 60$ ALLOW alternative approach for empirical formula and evidence that 60 is equal to C_3H_8O $M_r = 60$ Carbon Hydrogen $60 \times 60 = 36$ $60 \times 13.3 = 8$ 100 $36/12 = 3 C$ $8/1 = 8H$ $36 + 8 = 44$ $60 - 44 = 16$ so $1 O$ C_3H_8O

Question	Answer	Marks	Guidance
8	Identification and equation	6	
	X is CH ₃ CH ₂ CH ₂ OH OR CH ₃ CHOHCH ₃ OR either CH ₃ CH ₂ CH ₂ OH or CH ₃ CHOHCH ₃ ✓		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
			IGNORE names
	QWC Stated in words that Y must be an ester because it is made from the reaction of a carboxylic acid AND X (propan-1-ol OR propan-2-ol OR an alcohol) ✓		ALLOW a carboxylic acid reacts with an alcohol to give an ester. IGNORE ethanoic acid (as this is stated in the question)
	Y is CH ₃ COOCH ₂ CH ₂ CH ₃ OR CH ₃ COOCH(CH ₃) ₂ OR either CH ₃ COOCH ₂ CH ₂ CH ₃ or CH ₃ COOCH(CH ₃) ₂ ✓ Must be consistent with a structure of alcohol X		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
			If no structure of X is provided one mark can be awarded for a correct structure of CH ₃ COOCH ₂ CH ₂ CH ₃ OR CH ₃ COOCH(CH ₃) ₂
	$m/z = 31$ is $CH_2OH^+ \checkmark$		DO NOT ALLOW CH ₃ O ⁺
	QWC $m/z = 31$ or CH_2OH indicates that X must be CH_3CH_2OH OR cannot be $CH_3CH(OH)CH_3$		QWC must link the evidence to the structure of propan-1-ol.
	OR shows that X is the primary alcohol \checkmark $C_3H_8O + C_2H_4O_2 \rightarrow C_5H_{10}O_2 + H_2O \checkmark$		In equation ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above
	Total	10	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

